Geometric integrators and the Hamiltonian Monte Carlo method

11/14/2017
by   Nawaf Bou-Rabee, et al.
0

This paper surveys in detail the relations between numerical integration and the Hamiltonian (or hybrid) Monte Carlo method (HMC). Since the computational cost of HMC mainly lies in the numerical integrations, these should be performed as efficiently as possible. However, HMC requires methods that have the geometric properties of being volume-preserving and reversible, and this limits the number of integrators that may be used. On the other hand, these geometric properties have important quantitative implications on the integration error, which in turn have an impact on the acceptance rate of the proposal. While at present the velocity Verlet algorithm is the method of choice for good reasons, we argue that Verlet can be improved upon. We also discuss in detail the behavior of HMC as the dimensionality of the target distribution increases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset