Getting to Know Low-light Images with The Exclusively Dark Dataset
Low-light is an inescapable element of our daily surroundings that greatly affects the efficiency of our vision. Research works on low-light has seen a steady growth, particularly in the field of image enhancement, but there is still a lack of a go-to database as benchmark. Besides, research fields that may assist us in low-light environments, such as object detection, has glossed over this aspect even though breakthroughs-after-breakthroughs had been achieved in recent years, most noticeably from the lack of low-light data (less than 2 PASCAL VOC, ImageNet, and Microsoft COCO. Thus, we propose the Exclusively Dark dataset to elevate this data drought, consisting exclusively of ten different types of low-light images (i.e. low, ambient, object, single, weak, strong, screen, window, shadow and twilight) captured in visible light only with image and object level annotations. Moreover, we share insightful findings in regards to the effects of low-light on the object detection task by analyzing visualizations of both hand-crafted and learned features. Most importantly, we found that the effects of low-light reaches far deeper into the features than can be solved by simple "illumination invariance'". It is our hope that this analysis and the Exclusively Dark dataset can encourage the growth in low-light domain researches on different fields. The Exclusively Dark dataset with its annotation is available at https://github.com/cs-chan/Exclusively-Dark-Image-Dataset
READ FULL TEXT