Global Convergence of Localized Policy Iteration in Networked Multi-Agent Reinforcement Learning
We study a multi-agent reinforcement learning (MARL) problem where the agents interact over a given network. The goal of the agents is to cooperatively maximize the average of their entropy-regularized long-term rewards. To overcome the curse of dimensionality and to reduce communication, we propose a Localized Policy Iteration (LPI) algorithm that provably learns a near-globally-optimal policy using only local information. In particular, we show that, despite restricting each agent's attention to only its κ-hop neighborhood, the agents are able to learn a policy with an optimality gap that decays polynomially in κ. In addition, we show the finite-sample convergence of LPI to the global optimal policy, which explicitly captures the trade-off between optimality and computational complexity in choosing κ. Numerical simulations demonstrate the effectiveness of LPI.
READ FULL TEXT