Global-Local Aggregation with Deformable Point Sampling for Camouflaged Object Detection

11/22/2022
by   Minhyeok Lee, et al.
0

The camouflaged object detection (COD) task aims to find and segment objects that have a color or texture that is very similar to that of the background. Despite the difficulties of the task, COD is attracting attention in medical, lifesaving, and anti-military fields. To overcome the difficulties of COD, we propose a novel global-local aggregation architecture with a deformable point sampling method. Further, we propose a global-local aggregation transformer that integrates an object's global information, background, and boundary local information, which is important in COD tasks. The proposed transformer obtains global information from feature channels and effectively extracts important local information from the subdivided patch using the deformable point sampling method. Accordingly, the model effectively integrates global and local information for camouflaged objects and also shows that important boundary information in COD can be efficiently utilized. Our method is evaluated on three popular datasets and achieves state-of-the-art performance. We prove the effectiveness of the proposed method through comparative experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset