GNN Explainer: A Tool for Post-hoc Explanation of Graph Neural Networks

03/10/2019
by   Rex Ying, et al.
10

Graph Neural Networks (GNNs) are a powerful tool for machine learning on graphs. GNNs combine node feature information with the graph structure by using neural networks to pass messages through edges in the graph. However, incorporating both graph structure and feature information leads to complex non-linear models and explaining predictions made by GNNs remains to be a challenging task. Here we propose GnnExplainer, a general model-agnostic approach for providing interpretable explanations for predictions of any GNN-based model on any graph-based machine learning task (node and graph classification, link prediction). In order to explain a given node's predicted label, GnnExplainer provides a local interpretation by highlighting relevant features as well as an important subgraph structure by identifying the edges that are most relevant to the prediction. Additionally, the model provides single-instance explanations when given a single prediction as well as multi-instance explanations that aim to explain predictions for an entire class of instances/nodes. We formalize GnnExplainer as an optimization task that maximizes the mutual information between the prediction of the full model and the prediction of simplified explainer model. We experiment on synthetic as well as real-world data. On synthetic data we demonstrate that our approach is able to highlight relevant topological structures from noisy graphs. We also demonstrate GnnExplainer to provide a better understanding of pre-trained models on real-world tasks. GnnExplainer provides a variety of benefits, from the identification of semantically relevant structures to explain predictions to providing guidance when debugging faulty graph neural network models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset