GPU Accelerated Cascade Hashing Image Matching for Large Scale 3D Reconstruction
Image feature point matching is a key step in Structure from Motion(SFM). However, it is becoming more and more time consuming because the number of images is getting larger and larger. In this paper, we proposed a GPU accelerated image matching method with improved Cascade Hashing. Firstly, we propose a Disk-Memory-GPU data exchange strategy and optimize the load order of data, so that the proposed method can deal with big data. Next, we parallelize the Cascade Hashing method on GPU. An improved parallel reduction and an improved parallel hashing ranking are proposed to fulfill this task. Finally, extensive experiments show that our image matching is about 20 times faster than SiftGPU on the same graphics card, nearly 100 times faster than the CPU CasHash method and hundreds of times faster than the CPU Kd-Tree based matching method. Further more, we introduce the epipolar constraint to the proposed method, and use the epipolar geometry to guide the feature matching procedure, which further reduces the matching cost.
READ FULL TEXT