Gradient descent algorithms for Bures-Wasserstein barycenters
We study first order methods to compute the barycenter of a probability distribution over the Bures-Wasserstein manifold. We derive global rates of convergence for both gradient descent and stochastic gradient descent despite the fact that the barycenter functional is not geodesically convex. Our analysis overcomes this technical hurdle by developing a Polyak-Lojasiewicz (PL) inequality, which is built using tools from optimal transport and metric geometry.
READ FULL TEXT