Gradient-Free Textual Inversion
Recent works on personalized text-to-image generation usually learn to bind a special token with specific subjects or styles of a few given images by tuning its embedding through gradient descent. It is natural to question whether we can optimize the textual inversions by only accessing the process of model inference. As only requiring the forward computation to determine the textual inversion retains the benefits of less GPU memory, simple deployment, and secure access for scalable models. In this paper, we introduce a gradient-free framework to optimize the continuous textual inversion in an iterative evolutionary strategy. Specifically, we first initialize an appropriate token embedding for textual inversion with the consideration of visual and text vocabulary information. Then, we decompose the optimization of evolutionary strategy into dimension reduction of searching space and non-convex gradient-free optimization in subspace, which significantly accelerates the optimization process with negligible performance loss. Experiments in several applications demonstrate that the performance of text-to-image model equipped with our proposed gradient-free method is comparable to that of gradient-based counterparts with variant GPU/CPU platforms, flexible employment, as well as computational efficiency.
READ FULL TEXT