GRAND for Fading Channels using Pseudo-soft Information

07/22/2022
by   Hadi Sarieddeen, et al.
0

Guessing random additive noise decoding (GRAND) is a universal maximum-likelihood decoder that recovers code-words by guessing rank-ordered putative noise sequences and inverting their effect until one or more valid code-words are obtained. This work explores how GRAND can leverage additive-noise statistics and channel-state information in fading channels. Instead of computing per-bit reliability information in detectors and passing this information to the decoder, we propose leveraging the colored noise statistics following channel equalization as pseudo-soft information for sorting noise sequences. We investigate the efficacy of pseudo-soft information extracted from linear zero-forcing and minimum mean square error equalization when fed to a hardware-friendly soft-GRAND (ORBGRAND). We demonstrate that the proposed pseudo-soft GRAND schemes approximate the performance of state-of-the-art decoders of CA-Polar and BCH codes that avail of complete soft information. Compared to hard-GRAND, pseudo-soft ORBGRAND introduces up to 10dB SNR gains for a target 10^-3 block-error rate.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset