Granger-Causal Hierarchical Skill Discovery

06/15/2023
by   Caleb Chuck, et al.
0

Reinforcement Learning (RL) has shown promising results learning policies for complex tasks, but can often suffer from low sample efficiency and limited transfer. We introduce the Hierarchy of Interaction Skills (HIntS) algorithm, which uses learned interaction detectors to discover and train a hierarchy of skills that manipulate factors in factored environments. Inspired by Granger causality, these unsupervised detectors capture key events between factors to sample efficiently learn useful skills and transfer those skills to other related tasks – tasks where many reinforcement learning techniques struggle. We evaluate HIntS on a robotic pushing task with obstacles – a challenging domain where other RL and HRL methods fall short. The learned skills not only demonstrate transfer using variants of Breakout, a common RL benchmark, but also show 2-3x improvement in both sample efficiency and final performance compared to comparable RL baselines. Together, HIntS demonstrates a proof of concept for using Granger-causal relationships for skill discovery.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset