Graph-based Prior and Forward Models for Inverse Problems on Manifolds with Boundaries

06/12/2021
by   John Harlim, et al.
0

This paper develops manifold learning techniques for the numerical solution of PDE-constrained Bayesian inverse problems on manifolds with boundaries. We introduce graphical Matérn-type Gaussian field priors that enable flexible modeling near the boundaries, representing boundary values by superposition of harmonic functions with appropriate Dirichlet boundary conditions. We also investigate the graph-based approximation of forward models from PDE parameters to observed quantities. In the construction of graph-based prior and forward models, we leverage the ghost point diffusion map algorithm to approximate second-order elliptic operators with classical boundary conditions. Numerical results validate our graph-based approach and demonstrate the need to design prior covariance models that account for boundary conditions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset