GraphChallenge.org Triangle Counting Performance

03/18/2020
by   Siddharth Samsi, et al.
0

The rise of graph analytic systems has created a need for new ways to measure and compare the capabilities of graph processing systems. The MIT/Amazon/IEEE Graph Challenge has been developed to provide a well-defined community venue for stimulating research and highlighting innovations in graph analysis software, hardware, algorithms, and systems. GraphChallenge.org provides a wide range of pre-parsed graph data sets, graph generators, mathematically defined graph algorithms, example serial implementations in a variety of languages, and specific metrics for measuring performance. The triangle counting component of GraphChallenge.org tests the performance of graph processing systems to count all the triangles in a graph and exercises key graph operations found in many graph algorithms. In 2017, 2018, and 2019 many triangle counting submissions were received from a wide range of authors and organizations. This paper presents a performance analysis of the best performers of these submissions. These submissions show that their state-of-the-art triangle counting execution time, T_ tri, is a strong function of the number of edges in the graph, N_e, which improved significantly from 2017 (T_ tri≈ (N_e/10^8)^4/3) to 2018 (T_ tri≈ N_e/10^9) and remained comparable from 2018 to 2019. Graph Challenge provides a clear picture of current graph analysis systems and underscores the need for new innovations to achieve high performance on very large graphs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset