GX-Plug: a Middleware for Plugging Accelerators to Distributed Graph Processing

03/24/2022
by   Kai Zou, et al.
0

Recently, research communities highlight the necessity of formulating a scalability continuum for large-scale graph processing, which gains the scale-out benefits from distributed graph systems, and the scale-up benefits from high-performance accelerators. To this end, we propose a middleware, called the GX-plug, for the ease of integrating the merits of both. As a middleware, the GX-plug is versatile in supporting different runtime environments, computation models, and programming models. More, for improving the middleware performance, we study a series of techniques, including pipeline shuffle, synchronization caching and skipping, and workload balancing, for intra-, inter-, and beyond-iteration optimizations, respectively. Experiments show that our middleware efficiently plugs accelerators to representative distributed graph systems, e.g., GraphX and Powergraph, with up-to 20x acceleration ratio.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset