Hallucinated Adversarial Learning for Robust Visual Tracking
Humans can easily learn new concepts from just a single exemplar, mainly due to their remarkable ability to imagine or hallucinate what the unseen exemplar may look like in different settings. Incorporating such an ability to hallucinate diverse new samples of the tracked instance can help the trackers alleviate the over-fitting problem in the low-data tracking regime. To achieve this, we propose an effective adversarial approach, denoted as adversarial "hallucinator" (AH), for robust visual tracking. The proposed AH is designed to firstly learn transferable non-linear deformations between a pair of same-identity instances, and then apply these deformations to an unseen tracked instance in order to generate diverse positive training samples. By incorporating AH into an online tracking-by-detection framework, we propose the hallucinated adversarial tracker (HAT), which jointly optimizes AH with an online classifier (e.g., MDNet) in an end-to-end manner. In addition, a novel selective deformation transfer (SDT) method is presented to better select the deformations which are more suitable for transfer. Extensive experiments on 3 popular benchmarks demonstrate that our HAT achieves the state-of-the-art performance.
READ FULL TEXT