Hardware Accelerator for Multi-Head Attention and Position-Wise Feed-Forward in the Transformer
Designing hardware accelerators for deep neural networks (DNNs) has been much desired. Nonetheless, most of these existing accelerators are built for either convolutional neural networks (CNNs) or recurrent neural networks (RNNs). Recently, the Transformer model is replacing the RNN in the natural language processing (NLP) area. However, because of intensive matrix computations and complicated data flow being involved, the hardware design for the Transformer model has never been reported. In this paper, we propose the first hardware accelerator for two key components, i.e., the multi-head attention (MHA) ResBlock and the position-wise feed-forward network (FFN) ResBlock, which are the two most complex layers in the Transformer. Firstly, an efficient method is introduced to partition the huge matrices in the Transformer, allowing the two ResBlocks to share most of the hardware resources. Secondly, the computation flow is well designed to ensure the high hardware utilization of the systolic array, which is the biggest module in our design. Thirdly, complicated nonlinear functions are highly optimized to further reduce the hardware complexity and also the latency of the entire system. Our design is coded using hardware description language (HDL) and evaluated on a Xilinx FPGA. Compared with the implementation on GPU with the same setting, the proposed design demonstrates a speed-up of 14.6x in the MHA ResBlock, and 3.4x in the FFN ResBlock, respectively. Therefore, this work lays a good foundation for building efficient hardware accelerators for multiple Transformer networks.
READ FULL TEXT