Harmless Overparametrization in Two-layer Neural Networks

06/09/2021
by   Huiyuan Wang, et al.
0

Overparametrized neural networks, where the number of active parameters is larger than the sample size, prove remarkably effective in modern deep learning practice. From the classical perspective, however, much fewer parameters are sufficient for optimal estimation and prediction, whereas overparametrization can be harmful even in the presence of explicit regularization. To reconcile this conflict, we present a generalization theory for overparametrized ReLU networks by incorporating an explicit regularizer based on the scaled variation norm. Interestingly, this regularizer is equivalent to the ridge from the angle of gradient-based optimization, but is similar to the group lasso in terms of controlling model complexity. By exploiting this ridge-lasso duality, we show that overparametrization is generally harmless to two-layer ReLU networks. In particular, the overparametrized estimators are minimax optimal up to a logarithmic factor. By contrast, we show that overparametrized random feature models suffer from the curse of dimensionality and thus are suboptimal.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset