Harnessing GANs for Addition of New Classes in VSR

01/29/2019
by   Yaman Kumar, et al.
0

It is an easy task for humans to learn and generalize a problem, perhaps it is due to their ability to visualize and imagine unseen objects and concepts. The power of imagination comes handy especially when interpolating learnt experience (like seen examples) over new classes of a problem. For a machine learning system, acquiring such powers of imagination are still a hard task. We present a novel approach to low-shot learning that uses the idea of imagination over unseen classes in a classification problem setting. We combine a classifier with a `visionary' (i.e., a GAN model) that teaches the classifier to generalize itself over new and unseen classes. This approach can be incorporated into a variety of problem settings where we need a classifier to learn and generalize itself to new and unseen classes. We compare the performance of classifiers with and without the visionary GAN model helping them.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset