Hedging Cryptocurrency Options

11/23/2021
by   Jovanka Lili Matic, et al.
0

The cryptocurrency (CC) market is volatile, non-stationary and non-continuous. Together with liquid derivatives markets, this poses a unique opportunity to study risk management, especially the hedging of options, in a turbulent market. We study the hedge behaviour and effectiveness for the class of affine jump diffusion models and infinite activity Lévy processes. First, market data is calibrated to SVI-implied volatility surfaces to price options. To cover a wide range of market dynamics, we generate Monte Carlo price paths using an SVCJ model (stochastic volatility with correlated jumps) assumption and a close-to-actual-market GARCH-filtered kernel density estimation. In these two markets, options are dynamically hedged with Delta, Delta-Gamma, Delta-Vega and Minimum Variance strategies. Including a wide range of market models allows to understand the trade-off in the hedge performance between complete, but overly parsimonious models, and more complex, but incomplete models. The calibration results reveal a strong indication for stochastic volatility, low jump frequency and evidence of infinite activity. Short-dated options are less sensitive to volatility or Gamma hedges. For longer-date options, good tail risk reduction is consistently achieved with multiple-instrument hedges. This is persistently accomplished with complete market models with stochastic volatility.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro