Hercules: Boosting the Performance of Privacy-preserving Federated Learning

07/11/2022
by   Guowen Xu, et al.
0

In this paper, we address the problem of privacy-preserving federated neural network training with N users. We present Hercules, an efficient and high-precision training framework that can tolerate collusion of up to N-1 users. Hercules follows the POSEIDON framework proposed by Sav et al. (NDSS'21), but makes a qualitative leap in performance with the following contributions: (i) we design a novel parallel homomorphic computation method for matrix operations, which enables fast Single Instruction and Multiple Data (SIMD) operations over ciphertexts. For the multiplication of two h× h dimensional matrices, our method reduces the computation complexity from O(h^3) to O(h). This greatly improves the training efficiency of the neural network since the ciphertext computation is dominated by the convolution operations; (ii) we present an efficient approximation on the sign function based on the composite polynomial approximation. It is used to approximate non-polynomial functions (i.e., ReLU and max), with the optimal asymptotic complexity. Extensive experiments on various benchmark datasets (BCW, ESR, CREDIT, MNIST, SVHN, CIFAR-10 and CIFAR-100) show that compared with POSEIDON, Hercules obtains up to 4 reduction in the computation and communication cost.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro