Heterogeneous Objectives: State-of-the-Art and Future Research
Multiobjective optimization problems with heterogeneous objectives are defined as those that possess significantly different types of objective function components (not just incommensurable in units or scale). For example, in a heterogeneous problem the objective function components may differ in formal computational complexity, practical evaluation effort (time, costs, or resources), determinism (stochastic vs deterministic), or some combination of all three. A particularly challenging variety of heterogeneity may occur by the combination of a time-consuming laboratory-based objective with other objectives that are evaluated using faster computer-based calculations. Perhaps more commonly, all objectives may be evaluated computationally, but some may require a lengthy simulation process while others are computed from a relatively simple closed-form calculation. In this chapter, we motivate the need for more work on the topic of heterogeneous objectives (with reference to real-world examples), expand on a basic taxonomy of heterogeneity types, and review the state of the art in tackling these problems. We give special attention to heterogeneity in evaluation time (latency) as this requires sophisticated approaches. We also present original experimental work on estimating the amount of heterogeneity in evaluation time expected in many-objective problems, given reasonable assumptions, and survey related research threads that could contribute to this area in future.
READ FULL TEXT