Hierarchical sparse Cholesky decomposition with applications to high-dimensional spatio-temporal filtering

06/30/2020
by   Marcin Jurek, et al.
0

Spatial statistics often involves Cholesky decomposition of covariance matrices. To ensure scalability to high dimensions, several recent approximations have assumed a sparse Cholesky factor of the precision matrix. We propose a hierarchical Vecchia approximation, whose conditional-independence assumptions imply sparsity in the Cholesky factors of both the precision and the covariance matrix. This remarkable property is crucial for applications to high-dimensional spatio-temporal filtering. We present a fast and simple algorithm to compute our hierarchical Vecchia approximation, and we provide extensions to non-linear data assimilation with non-Gaussian data based on the Laplace approximation. In several numerical comparisons, our methods strongly outperformed alternative approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset