High dimensional asymptotics of likelihood ratio tests in Gaussian sequence model under convex constraint

10/07/2020
by   Qiyang Han, et al.
0

In the Gaussian sequence model Y=μ+ξ, we study the likelihood ratio test (LRT) for testing H_0: μ=μ_0 versus H_1: μ∈ K, where μ_0 ∈ K, and K is a closed convex set in ℝ^n. In particular, we show that under the null hypothesis, normal approximation holds for the log-likelihood ratio statistic for a general pair (μ_0,K), in the high dimensional regime where the estimation error of the associated least squares estimator diverges in an appropriate sense. The normal approximation further leads to a precise characterization of the power behavior of the LRT in the high dimensional regime. These characterizations show that the power behavior of the LRT is in general non-uniform with respect to the Euclidean metric, and illustrate the conservative nature of existing minimax optimality and sub-optimality results for the LRT. A variety of examples, including testing in the orthant/circular cone, isotonic regression, Lasso, and testing parametric assumptions versus shape-constrained alternatives, are worked out to demonstrate the versatility of the developed theory.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro