High-dimensional classification by sparse logistic regression

06/26/2017
by   Felix Abramovich, et al.
0

We consider high-dimensional binary classification by sparse logistic regression. We propose a model/feature selection procedure based on penalized maximum likelihood with a complexity penalty on the model size and derive the non-asymptotic bounds for the resulting misclassification excess risk. The bounds can be reduced under the additional low-noise condition. The proposed complexity penalty is remarkably related to the VC-dimension of a set of sparse linear classifiers. Implementation of any complexity penalty-based criterion, however, requires a combinatorial search over all possible models. To find a model selection procedure computationally feasible for high-dimensional data, we extend the Slope estimator for logistic regression and show that under an additional weighted restricted eigenvalue condition it is rate-optimal in the minimax sense.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro