High order corrected trapezoidal rules for a class of singular integrals

03/09/2022
by   Federico Izzo, et al.
0

We present a family of high order trapezoidal rule-based quadratures for a class of singular integrals, where the integrand has a point singularity. The singular part of the integrand is expanded in a Taylor series involving terms of increasing smoothness. The quadratures are based on the trapezoidal rule, with the quadrature weights for Cartesian nodes close to the singularity judiciously corrected based on the expansion. High order accuracy can be achieved by utilizing a sufficient number of correction nodes around the singularity to approximate the terms in the series expansion. The derived quadratures are applied to the Implicit Boundary Integral formulation of surface integrals involving the Laplace layer kernels.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset