High-order Methods for a Pressure Poisson Equation Reformulation of the Navier-Stokes Equations with Electric Boundary Conditions

02/23/2020
by   Rodolfo Ruben Rosales, et al.
0

Pressure Poisson equation (PPE) reformulations of the incompressible Navier-Stokes equations (NSE) replace the incompressibility constraint by a Poisson equation for the pressure and a suitable choice of boundary conditions. This yields a time-evolution equation for the velocity field only, with the pressure gradient acting as a nonlocal operator. Thus, numerical methods based on PPE reformulations, in principle, have no limitations in achieving high order. In this paper, it is studied to what extent high-order methods for the NSE can be obtained from a specific PPE reformulation with electric boundary conditions (EBC). To that end, implicit-explicit (IMEX) time-stepping is used to decouple the pressure solve from the velocity update, while avoiding a parabolic time-step restriction; and mixed finite elements are used in space, to capture the structure imposed by the EBC. Via numerical examples, it is demonstrated that the methodology can yield at least third order accuracy in space and time.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset