Hot-spots Detection in Count Data by Poisson Assisted Smooth Sparse Tensor Decomposition

05/20/2022
by   Yujie Zhao, et al.
0

Count data occur widely in many bio-surveillance and healthcare applications, e.g., the numbers of new patients of different types of infectious diseases from different cities/counties/states repeatedly over time, say, daily/weekly/monthly. For this type of count data, one important task is the quick detection and localization of hot-spots in terms of unusual infectious rates so that we can respond appropriately. In this paper, we develop a method called Poisson assisted Smooth Sparse Tensor Decomposition (PoSSTenD), which not only detects when hot-spots occur but also localizes where hot-spots occur. The main idea of our proposed PoSSTenD method is articulated as follows. First, we represent the observed count data as a three-dimensional tensor including (1) a spatial dimension for location patterns, e.g., different cities/countries/states; (2) a temporal domain for time patterns, e.g., daily/weekly/monthly; (3) a categorical dimension for different types of data sources, e.g., different types of diseases. Second, we fit this tensor into a Poisson regression model, and then we further decompose the infectious rate into two components: smooth global trend and local hot-spots. Third, we detect when hot-spots occur by building a cumulative sum (CUSUM) control chart and localize where hot-spots occur by their LASSO-type sparse estimation. The usefulness of our proposed methodology is validated through numerical simulation studies and a real-world dataset, which records the annual number of 10 different infectious diseases from 1993 to 2018 for 49 mainland states in the United States.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset