How to Net a Convex Shape

12/08/2017
by   Sariel Har-Peled, et al.
0

We revisit the problem of building weak -nets for convex ranges over a point set in ^d. Unfortunately, the known constructions of weak -nets yields sets that are of size Ω(^-d e^c d^2 )., where c is some constant. We offer two alternative schemes that yield significantly smaller sets, and two related results, as follows: (A) Let be a sample of size (d^2 ^-1) points from the original point set (which is no longer needed), where hides polylogarithmic terms. Given a convex body , via a separation oracle, the algorithm performs a small sequence of (oracle) stabbing queries (computed from ) -- if none of the query points hits , then contains less than an -fraction of the input points. The number of stabbing queries performed is O( d^2 ^-1), and the time to compute them is (d^9 ^-1). To the best of our knowledge, this is the first weak -net related construction where all constants/bounds are polynomial in the dimension. (B) If one is allowed to expand the convex range before checking if it intersects the sample, then a sample of size .(^-(d+1)/2), from the original point set, is sufficient to form a net. (C) We show a construction of weak -nets which have the following additional property: For a heavy body, there is a net point that stabs the body, and it is also a good centerpoint for the points contained inside the body. (D) We present a variant of a known algorithm for approximating a centerpoint, improving the running time from (d^9) to (d^7). Our analysis of this algorithm is arguably cleaner than the previous version.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro