Hugo: A Cluster Scheduler that Efficiently Learns to Select Complementary Data-Parallel Jobs

02/14/2021
by   Lauritz Thamsen, et al.
0

Distributed data processing systems like MapReduce, Spark, and Flink are popular tools for analysis of large datasets with cluster resources. Yet, users often overprovision resources for their data processing jobs, while the resource usage of these jobs also typically fluctuates considerably. Therefore, multiple jobs usually get scheduled onto the same shared resources to increase the resource utilization and throughput of clusters. However, job runtimes and the utilization of shared resources can vary significantly depending on the specific combinations of co-located jobs. This paper presents Hugo, a cluster scheduler that continuously learns how efficiently jobs share resources, considering metrics for the resource utilization and interference among co-located jobs. The scheduler combines offline grouping of jobs with online reinforcement learning to provide a scheduling mechanism that efficiently generalizes from specific monitored job combinations yet also adapts to changes in workloads. Our evaluation of a prototype shows that the approach can reduce the runtimes of exemplary Spark jobs on a YARN cluster by up to 12.5 and waiting times can be bounded.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset