Hybrid mimetic finite-difference and virtual element formulation for coupled poromechanics
We present a hybrid mimetic finite-difference and virtual element formulation for coupled single-phase poromechanics on unstructured meshes. The key advantage of the scheme is that it is convergent on complex meshes containing highly distorted cells with arbitrary shapes. We use a local pressure-jump stabilization method based on unstructured macro-elements to prevent the development of spurious pressure modes in incompressible problems approaching undrained conditions. A scalable linear solution strategy is obtained using a block-triangular preconditioner designed specifically for the saddle-point systems arising from the proposed discretization. The accuracy and efficiency of our approach are demonstrated numerically on two-dimensional benchmark problems.
READ FULL TEXT