Hybrid quantum-classical convolutional neural network for phytoplankton classification
The taxonomic composition and abundance of phytoplankton, having direct impact on marine ecosystem dynamic and global environment change, are listed as essential ocean variables. Phytoplankton classification is very crucial for Phytoplankton analysis, but it is very difficult because of the huge amount and tiny volume of Phytoplankton. Machine learning is the principle way of performing phytoplankton image classification automatically. When carrying out large-scale research on the marine phytoplankton, the volume of data increases overwhelmingly and more powerful computational resources are required for the success of machine learning algorithms. Recently, quantum machine learning has emerged as the potential solution for large-scale data processing by harnessing the exponentially computational power of quantum computer. Here, for the first time, we demonstrate the feasibility of quantum deep neural networks for phytoplankton classification. Hybrid quantum-classical convolutional and residual neural networks are developed based on the classical architectures. These models make a proper balance between the limited function of the current quantum devices and the large size of phytoplankton images, which make it possible to perform phytoplankton classification on the near-term quantum computers. Better performance is obtained by the quantum-enhanced models against the classical counterparts. In particular, quantum models converge much faster than classical ones. The present quantum models are versatile, and can be applied for various tasks of image classification in the field of marine science.
READ FULL TEXT