HYPE: Massive Hypergraph Partitioning with Neighborhood Expansion

10/26/2018
by   Christian Mayer, et al.
0

Many important real-world applications-such as social networks or distributed data bases-can be modeled as hypergraphs. In such a model, vertices represent entities-such as users or data records-whereas hyperedges model a group membership of the vertices-such as the authorship in a specific topic or the membership of a data record in a specific replicated shard. To optimize such applications, we need an efficient and effective solution to the NP-hard balanced k-way hypergraph partitioning problem. However, existing hypergraph partitioners do not effectively exploit the hypergraph structure when performing the partitioning decisions. We propose HYPE, a hypergraph partitionier that exploits the neighborhood relations between vertices in the hypergraph using an efficient implementation of neighborhood expansion. HYPE improves partitioning quality by up to 95 compared to the state of the art.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset