Identification of AC Networks via Online Learning

03/13/2020
by   Emanuele Fabbiani, et al.
0

The increasing integration of intermittent renewable generation in power networks calls for novel planning and control methodologies, which hinge on detailed knowledge of the grid. However, reliable information concerning the system topology and parameters may be missing or outdated for temporally varying AC networks. This paper proposes an online learning procedure to estimate the admittance matrix of an AC network capturing topological information and line parameters. We start off by providing a recursive identification algorithm that exploits phasor measurements of voltages and currents. With the goal of accelerating convergence, we subsequently complement our base algorithm with a design-of-experiment procedure, which maximizes the information content of data at each step by computing optimal voltage excitations. Our approach improves on existing techniques and its effectiveness is substantiated by numerical studies on a 6-bus AC network.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset