Identification of Shallow Neural Networks by Fewest Samples
We address the uniform approximation of sums of ridge functions ∑_i=1^m g_i(a_i· x) on R^d, representing the shallowest form of feed-forward neural network, from a small number of query samples, under mild smoothness assumptions on the functions g_i's and near-orthogonality of the ridge directions a_i's. The sample points are randomly generated and are universal, in the sense that the sampled queries on those points will allow the proposed recovery algorithms to perform a uniform approximation of any sum of ridge functions with high-probability. Our general approximation strategy is developed as a sequence of algorithms to perform individual sub-tasks. We first approximate the span of the ridge directions. Then we use a straightforward substitution, which reduces the dimensionality of the problem from d to m. The core of the construction is then the approximation of ridge directions expressed in terms of rank-1 matrices a_i ⊗ a_i, realized by formulating their individual identification as a suitable nonlinear program, maximizing the spectral norm of certain competitors constrained over the unit Frobenius sphere. The final step is then to approximate the functions g_1,...,g_m by ĝ_1,...,ĝ_m. Higher order differentiation, as used in our construction, of sums of ridge functions or of their compositions, as in deeper neural network, yields a natural connection between neural network weight identification and tensor product decomposition identification. In the case of the shallowest feed-forward neural network, we show that second order differentiation and tensors of order two (i.e., matrices) suffice.
READ FULL TEXT