Identity-Preserving Knowledge Distillation for Low-resolution Face Recognition
Low-resolution face recognition (LRFR) has become a challenging problem for modern deep face recognition systems. Existing methods mainly leverage prior information from high-resolution (HR) images by either reconstructing facial details with super-resolution techniques or learning a unified feature space. To address this issue, this paper proposes a novel approach which enforces the network to focus on the discriminative information stored in the low-frequency components of a low-resolution (LR) image. A cross-resolution knowledge distillation paradigm is first employed as the learning framework. An identity-preserving network, WaveResNet, and a wavelet similarity loss are then designed to capture low-frequency details and boost performance. Finally, an image degradation model is conceived to simulate more realistic LR training data. Consequently, extensive experimental results show that the proposed method consistently outperforms the baseline model and other state-of-the-art methods across a variety of image resolutions.
READ FULL TEXT