Illumination Adaptive Transformer
Challenging illumination conditions (low light, underexposure and overexposure) in the real world not only cast an unpleasant visual appearance but also taint the computer vision tasks. Existing light adaptive methods often deal with each condition individually. What is more, most of them often operate on a RAW image or over-simplify the camera image signal processing (ISP) pipeline. By decomposing the light transformation pipeline into local and global ISP components, we propose a lightweight fast Illumination Adaptive Transformer (IAT) which comprises two transformer-style branches: local estimation branch and global ISP branch. While the local branch estimates the pixel-wise local components relevant to illumination, the global branch defines learnable quires that attend the whole image to decode the parameters. Our IAT could also conduct both object detection and semantic segmentation under various light conditions. We have extensively evaluated IAT on multiple real-world datasets on 2 low-level tasks and 3 high-level tasks. With only 90k parameters and 0.004s processing speed (excluding high-level module), our IAT has consistently achieved superior performance over SOTA. Code is available at https://github.com/cuiziteng/IlluminationAdaptive-Transformer.
READ FULL TEXT