ILP-based Local Search for Graph Partitioning

02/20/2018
by   Alexandra Henzinger, et al.
0

Computing high-quality graph partitions is a challenging problem with numerous applications. In this paper, we present a novel meta-heuristic for the balanced graph partitioning problem. Our approach is based on integer linear programs that solve the partitioning problem to optimality. However, since those programs typically do not scale to large inputs, we adapt them to heuristically improve a given partition. We do so by defining a much smaller model that allows us to use symmetry breaking and other techniques that make the approach scalable. For example, in Walshaw's well-known benchmark tables we are able to improve roughly half of all entries when the number of blocks is high.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset