Image Magnification Network for Vessel Segmentation in OCTA Images
Optical coherence tomography angiography (OCTA) is a novel non-invasive imaging modality that allows micron-level resolution to visualize the retinal microvasculature. The retinal vessel segmentation in OCTA images is still an open problem, and especially the thin and dense structure of the capillary plexus is an important challenge of this problem. In this work, we propose a novel image magnification network (IMN) for vessel segmentation in OCTA images. Contrary to the U-Net structure with a down-sampling encoder and up-sampling decoder, the proposed IMN adopts the design of up-sampling encoding and then down-sampling decoding. This design is to capture more image details and reduce the omission of thin-and-small structures. The experimental results on three open OCTA datasets show that the proposed IMN with an average dice score of 90.2 Besides, we also demonstrate the superior performance of IMN in cross-field image vessel segmentation and vessel skeleton extraction.
READ FULL TEXT