Image Restoration: Structured Low Rank Matrix Framework for Piecewise Smooth Functions and Beyond
Recently, mapping a signal/image into a low rank Hankel/Toeplitz matrix has become an emerging alternative to the traditional sparse regularization, due to its ability to alleviate the basis mismatch between the true support in the continuous domain and the discrete grid. In this paper, we introduce a novel structured low rank matrix framework to restore piecewise smooth functions. Inspired by the total generalized variation to use sparse higher order derivatives, we derive that the Fourier samples of higher order derivatives satisfy an annihilation relation, resulting in a low rank multi-fold Hankel matrix. We further observe that the SVD of a low rank Hankel matrix corresponds to a tight wavelet frame system which can represent the image with sparse coefficients. Based on this observation, we also propose a wavelet frame analysis approach based continuous domain regularization model for the piecewise smooth image restoration. Finally, numerical results on image restoration tasks are presented as a proof-of-concept study to demonstrate that the proposed approach is compared favorably against several popular discrete regularization approaches and structured low rank matrix approaches.
READ FULL TEXT