Implementation Of Back-Propagation Neural Network For Isolated Bangla Speech Recognition

08/17/2013
by   Md. Ali Hossain, et al.
0

This paper is concerned with the development of Back-propagation Neural Network for Bangla Speech Recognition. In this paper, ten bangla digits were recorded from ten speakers and have been recognized. The features of these speech digits were extracted by the method of Mel Frequency Cepstral Coefficient (MFCC) analysis. The mfcc features of five speakers were used to train the network with Back propagation algorithm. The mfcc features of ten bangla digit speeches, from 0 to 9, of another five speakers were used to test the system. All the methods and algorithms used in this research were implemented using the features of Turbo C and C++ languages. From our investigation it is seen that the developed system can successfully encode and analyze the mfcc features of the speech signal to recognition. The developed system achieved recognition rate about 96.332 speaker dependent) and 92

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset