Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

06/03/2021
by   Mathias Niepert, et al.
0

Integrating discrete probability distributions and combinatorial optimization problems into neural networks has numerous applications but poses several challenges. We propose Implicit Maximum Likelihood Estimation (I-MLE), a framework for end-to-end learning of models combining discrete exponential family distributions and differentiable neural components. I-MLE is widely applicable: it only requires the ability to compute the most probable states; and does not rely on smooth relaxations. The framework encompasses several approaches, such as perturbation-based implicit differentiation and recent methods to differentiate through black-box combinatorial solvers. We introduce a novel class of noise distributions for approximating marginals via perturb-and-MAP. Moreover, we show that I-MLE simplifies to maximum likelihood estimation when used in some recently studied learning settings that involve combinatorial solvers. Experiments on several datasets suggest that I-MLE is competitive with and often outperforms existing approaches which rely on problem-specific relaxations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset