Implicit ridge regularization provided by the minimum-norm least squares estimator when n≪ p

05/28/2018
by   Dmitry Kobak, et al.
0

A conventional wisdom in statistical learning is that large models require strong regularization to prevent overfitting. This rule has been recently challenged by deep neural networks: despite being expressive enough to fit any training set perfectly, they still generalize well. Here we show that the same is true for linear regression in the under-determined n≪ p situation, provided that one uses the minimum-norm estimator. The case of linear model with least squares loss allows full and exact mathematical analysis. We prove that augmenting a model with many random covariates with small constant variance and using minimum-norm estimator is asymptotically equivalent to adding the ridge penalty. Using toy example simulations as well as real-life high-dimensional data sets, we demonstrate that explicit ridge penalty often fails to provide any improvement over this implicit ridge regularization. In this regime, minimum-norm estimator achieves zero training error but nevertheless has low expected error.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro