Improved Accounting for Differentially Private Learning
We consider the problem of differential privacy accounting, i.e. estimation of privacy loss bounds, in machine learning in a broad sense. We propose two versions of a generic privacy accountant suitable for a wide range of learning algorithms. Both versions are derived in a simple and principled way using well-known tools from probability theory, such as concentration inequalities. We demonstrate that our privacy accountant is able to achieve state-of-the-art estimates of DP guarantees and can be applied to new areas like variational inference. Moreover, we show that the latter enjoys differential privacy at minor cost.
READ FULL TEXT