Improved Soft-aided Decoding of Product Codes with Dynamic Reliability Scores
Products codes (PCs) are conventionally decoded with efficient iterative bounded-distance decoding (iBDD) based on hard-decision channel outputs which entails a performance loss compared to a soft-decision decoder. Recently, several hybrid algorithms have been proposed aimed to improve the performance of iBDD decoders via the aid of a certain amount of soft information while keeping the decoding complexity similarly low as in iBDD. We propose a novel hybrid low-complexity decoder for PCs based on error-and-erasure (EaE) decoding and dynamic reliability scores (DRSs). This decoder is based on a novel EaE component code decoder, which is able to decode beyond the designed distance of the component code but suffers from an increased miscorrection probability. The DRSs, reflecting the reliability of a codeword bit, are used to detect and avoid miscorrections. Simulation results show that this policy can reduce the miscorrection rate significantly and improves the decoding performance. The decoder requires only ternary message passing and a slight increase of computational complexity compared to iBDD, which makes it suitable for high-speed communication systems. Coding gains of up to 1.2 dB compared to the conventional iBDD decoder are observed.
READ FULL TEXT