Improving Inference Performance of Machine Learning with the Divide-and-Conquer Principle

01/12/2023
by   Alex Kogan, et al.
0

Many popular machine learning models scale poorly when deployed on CPUs. In this paper we explore the reasons why and propose a simple, yet effective approach based on the well-known Divide-and-Conquer Principle to tackle this problem of great practical importance. Given an inference job, instead of using all available computing resources (i.e., CPU cores) for running it, the idea is to break the job into independent parts that can be executed in parallel, each with the number of cores according to its expected computational cost. We implement this idea in the popular OnnxRuntime framework and evaluate its effectiveness with several use cases, including the well-known models for optical character recognition (PaddleOCR) and natural language processing (BERT).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset