Incorporating Domain Knowledge into Deep Neural Networks
We present a survey of ways in which domain-knowledge has been included when constructing models with neural networks. The inclusion of domain-knowledge is of special interest not just to constructing scientific assistants, but also, many other areas that involve understanding data using human-machine collaboration. In many such instances, machine-based model construction may benefit significantly from being provided with human-knowledge of the domain encoded in a sufficiently precise form. This paper examines two broad approaches to encode such knowledge–as logical and numerical constraints–and describes techniques and results obtained in several sub-categories under each of these approaches.
READ FULL TEXT