Incorporating Stylistic Lexical Preferences in Generative Language Models
While recent advances in language modeling have resulted in powerful generation models, their generation style remains implicitly dependent on the training data and can not emulate a specific target style. Leveraging the generative capabilities of a transformer-based language models, we present an approach to induce certain target-author attributes by incorporating continuous multi-dimensional lexical preferences of an author into generative language models. We introduce rewarding strategies in a reinforcement learning framework that encourages the use of words across multiple categorical dimensions, to varying extents. Our experiments demonstrate that the proposed approach can generate text that distinctively aligns with a given target author's lexical style. We conduct quantitative and qualitative comparisons with competitive and relevant baselines to illustrate the benefits of the proposed approach.
READ FULL TEXT