Incremental Active Opinion Learning Over a Stream of Opinionated Documents
Applications that learn from opinionated documents, like tweets or product reviews, face two challenges. First, the opinionated documents constitute an evolving stream, where both the author's attitude and the vocabulary itself may change. Second, labels of documents are scarce and labels of words are unreliable, because the sentiment of a word depends on the (unknown) context in the author's mind. Most of the research on mining over opinionated streams focuses on the first aspect of the problem, whereas for the second a continuous supply of labels from the stream is assumed. Such an assumption though is utopian as the stream is infinite and the labeling cost is prohibitive. To this end, we investigate the potential of active stream learning algorithms that ask for labels on demand. Our proposed ACOSTREAM 1 approach works with limited labels: it uses an initial seed of labeled documents, occasionally requests additional labels for documents from the human expert and incrementally adapts to the underlying stream while exploiting the available labeled documents. In its core, ACOSTREAM consists of a MNB classifier coupled with "sampling" strategies for requesting class labels for new unlabeled documents. In the experiments, we evaluate the classifier performance over time by varying: (a) the class distribution of the opinionated stream, while assuming that the set of the words in the vocabulary is fixed but their polarities may change with the class distribution; and (b) the number of unknown words arriving at each moment, while the class polarity may also change. Our results show that active learning on a stream of opinionated documents, delivers good performance while requiring a small selection of labels
READ FULL TEXT