Inductive Unsupervised Domain Adaptation for Few-Shot Classification via Clustering

06/23/2020
by   Xin Cong, et al.
0

Few-shot classification tends to struggle when it needs to adapt to diverse domains. Due to the non-overlapping label space between domains, the performance of conventional domain adaptation is limited. Previous work tackles the problem in a transductive manner, by assuming access to the full set of test data, which is too restrictive for many real-world applications. In this paper, we set out to tackle this issue by introducing a inductive framework, DaFeC, to improve Domain adaptation performance for Few-shot classification via Clustering. We first build a representation extractor to derive features for unlabeled data from the target domain (no test data is necessary) and then group them with a cluster miner. The generated pseudo-labeled data and the labeled source-domain data are used as supervision to update the parameters of the few-shot classifier. In order to derive high-quality pseudo labels, we propose a Clustering Promotion Mechanism, to learn better features for the target domain via Similarity Entropy Minimization and Adversarial Distribution Alignment, which are combined with a Cosine Annealing Strategy. Experiments are performed on the FewRel 2.0 dataset. Our approach outperforms previous work with absolute gains (in classification accuracy) of 4.95 11.62

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset