Infinite-Task Learning with Vector-Valued RKHSs

05/22/2018
by   Romain Brault, et al.
0

Machine learning has witnessed the tremendous success of solving tasks depending on a hyperparameter. While multi-task learning is celebrated for its capacity to solve jointly a finite number of tasks, learning a continuum of tasks for various loss functions is still a challenge. A promising approach, called Parametric Task Learning, has paved the way in the case of piecewise-linear loss functions. We propose a generic approach, called Infinite-Task Learning, to solve jointly a continuum of tasks via vector-valued RKHSs. We provide generalization guarantees to the suggested scheme and illustrate its efficiency in cost-sensitive classification, quantile regression and density level set estimation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset