Inform Product Change through Experimentation with Data-Driven Behavioral Segmentation
Online controlled experimentation is widely adopted for evaluating new features in the rapid development cycle for web products and mobile applications. Measurement of the overall experiment sample is a common practice to quantify the overall treatment effect. In order to understand why the treatment effect occurs in a certain way, segmentation becomes a valuable approach to a finer analysis of experiment results. This paper introduces a framework for creating and utilizing user behavioral segments in online experimentation. By using the data of user engagement with individual product components as input, this method defines segments that are closely related to the features being evaluated in the product development cycle. With a real-world example, we demonstrate that the analysis with such behavioral segments offered deep, actionable insights that successfully informed product decision-making.
READ FULL TEXT